Assimilation ofMODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4
نویسندگان
چکیده
To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (23°–45°N). Only minimal modifications are made in the higher-middle (45°–66°N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100%. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snow move polewardmainly due to the northwardmovement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, withmixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.
منابع مشابه
Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model
The NASA Catchment land surface model (CLSM) is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Moreover, a computationally-efficient empirical scheme is designed ...
متن کاملA methodology for snow data assimilation in a land surface model
[1] Snow cover has a large influence on heat fluxes between the land and atmosphere because of its high albedo and insulating thermal properties. Hence accurate snow representation in coupled land-ocean-atmosphere global climate models has the potential to greatly increase prediction accuracy. To this end, a one-dimensional extended Kalman filter analysis scheme has been developed to assimilate...
متن کاملEnhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter
[1] High-quality continental-scale snow water equivalent (SWE) data sets are generally not available, although they are important for climate research and water resources management. This study investigates the feasibility of a framework for developing such needed data sets over North America, through the ensemble Kalman filter (EnKF) approach, which assimilates the snow cover fraction observed...
متن کاملMultisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information
[1] This investigation establishes a multisensor snow data assimilation system over North America (from January 2002 to June 2007), toward the goal of better estimation of snowpack (in particular, snow water equivalent and snow depth) via incorporating both Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and Moderate Resolution Imaging Spectroradiometer (MODIS) s...
متن کاملData assimilation methods in the Earth sciences
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or ...
متن کامل